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 Adding impurities: dopants

 Ionization energy
• Bohr’s model
• Dopants in real materials

 Carrier statistics in doped semiconductors
• Impact of T
• Degenerate semiconductors



Intrinsic and n-doped semiconductors

Pure Silicon (100% Si)

Lattice constant: 0.54 nm
1022 atoms/cm3

ni = 1010 cm-3 at room temperature

One atom every 1012 contributes to the electrons 
in the  conduction band

P atom 
(5 valence electrons)

Almost pure silicon (99.99999% Si + 0.00001% P)

0.00001% P = 1 P atom every 107 Si atoms.
1015 P atoms/cm3

As the P has an extra valence electron, the conduction band 
can gain 1 e- per P atom (donor).

n = 1015 cm-3 at room temperature 
(100’000 times higher than intrinsic)



Intrinsic and p-doped semiconductors

B atom 
(3 valence electrons)

Almost pure silicon (99.99999% Si + 0.00001% B)

0.00001% B = 1 B atom every 107 Si atoms.
1015 B atoms/cm3

As the B has one valence electron less, the valence band can 
gain 1 h+ per B atom (acceptor).

p = 1015 cm-3 at room temperature 
(100’000 times higher than intrinsic)

Pure Silicon (100% Si)

Lattice constant: 0.54 nm
1022 atoms/cm3

ni = 1010 cm-3 at room temperature

One atom every 1012 contributes to the electrons 
in the  conduction band



Modified Bohr’s model

Modified Bohr model 

The simplified atomistic picture assumes that the extra charge of dopants act as a free charge in the lattice. 

The correct description instead must consider the charge unrelated to the molecular bonds of the lattice but binded to the dopant 
nucleus. In the case of monovalent dopant, we can use a modified Bohr model to describe the system.

P atom with 
one unbound valence electron
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The equilibrium is reached when the Coulomb 
attraction equals the centripetal force.

v is the velocity of the electron in a circular orbit 
which defines the quantized angular momentum L
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Radius of the extra charge 
rotating around its P atom 

embedded in a Si lattice
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Ionization energy

Modified Bohr model 

P atom with 
one unbound valence electron
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The electron in P:Si orbits far from 
the nucleus (with respect to the 
analogous case of H atom). It is 

expected a lower binding energy.

𝐸𝑛 = −
𝑚𝑒

∗𝑒4

2𝜋 4𝜋𝜀 ∗ 𝑛ħ 2

The binding energy is associated to the orbit 
radius and can therefore be calculated.

𝐸𝑛 = −13.6 𝑒𝑉

𝐸𝑛 = −26 𝑚𝑒𝑉

for H atom

For P atom in Si lattice

Energy required to separate the 
«extra» charge from its 

nucleus,i.e. IONIZATION ENERGY 
(ED)

The modified Bohr’s model offers a simple 
estimation of the ionization energy (correct order 
of magnitude). This result shows that the energy 

required for the dopants to provide free charges to 
the material is in the order of kT.



Dopants and ionization energies for Si

Grundmann, Ch 7

Distance from EC (meV) 

Distance from EV (meV) 



Grundmann, Ch 7

Dopants and ionization energies for GaAs

Distance from EC (meV) 

Distance from EV (meV) 



Carrier statistics in doped semiconductors

When adding dopants, the carrier density will 
depend on:
- Dopant density (𝑁𝐷)
- Ionized (empty) dopant density (𝑁𝐷

+)
- Non-ionized (populated) dopant density (𝑁𝐷

0)
where 

Assuming that 𝑁𝐷
+>> ni, then n = 𝑁𝐷

+
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The ionization of atoms will follow a distribution depending 
on the ionizaion energy and the temperature.

If we consider the ratio empty and populated donor, it is clear that a 
degeneracy factor ĝ𝐷 (usually equal to 2) must be taken into account.

The charged donor has one e- (either spin up or down, deg. 2)

The neutral donor has two e- (spin up and down, deg. 1)



where:

EF for doped semiconductors

ELECTRONEUTRALITY CONDITION
-n + 𝑁𝐷

+ = 0 (for doped semiconductors , ass. 𝑁𝐷
+>> ni)
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for low T

𝐸𝐹 ≅ 𝐸𝐶 + 𝑘𝑇 ∗ 𝑙𝑛
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𝐴𝑝𝑝𝑟𝑜𝑥. 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
for high T



High T: Intrinsic regime
Intermediate T: Saturation regime
Low T: Freeze out regime

Fermi energy vs T in doped semiconductors



Fermi energy vs T in doped Si



Homogeneously 
distributed

Cluster 
Degenerate semiconductor

Degenerate semiconductors


