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Intrinsic and n-doped semiconductors

Pure Silicon (100% Si)

Lattice constant: 0.54 nm
10%% atoms/cm?

ni = 101 cm at room temperature

One atom every 10'? contributes to the electrons
in the conduction band
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Almost pure silicon (99.99999% Si + 0.00001% P)

0.00001% P =1 P atom every 107 Si atoms.
101> P atoms/cm3

As the P has an extra valence electron, the conduction band
can gain 1 e- per P atom (donor).

n = 101> cm3 at room temperature
(100’000 times higher than intrinsic)



Intrinsic and p-doped semiconductors

Pure Silicon (100% Si)

Lattice constant: 0.54 nm
10%% atoms/cm?

ni = 101 cm at room temperature

One atom every 10'? contributes to the electrons
in the conduction band
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Almost pure silicon (99.99999% Si + 0.00001% B)

0.00001% B =1 B atom every 107 Si atoms.
101> B atoms/cm3

As the B has one valence electron less, the valence band can
gain 1 h+ per B atom (acceptor).

p = 10 cm™ at room temperature
(100’000 times higher than intrinsic)



Modified Bohr’s model

The simplified atomistic picture assumes that the extra charge of dopants act as a free charge in the lattice.

The correct description instead must consider the charge unrelated to the molecular bonds of the lattice but binded to the dopant
nucleus. In the case of monovalent dopant, we can use a modified Bohr model to describe the system.

Modified Bohr model The equilibrium is reached when the Coulomb
attraction equals the centripetal force.
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v is the velocity of the electron in a circular orbit
which defines the quantized angular momentum L



lonization energy

Modified Bohr model
o
P atom with
one unbound valence electron
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The electron in P:Si orbits far from
the nucleus (with respect to the
analogous case of H atom). It is

expected a lower binding energy.

Energy required to separate the
«extra» charge from its
nucleus,i.e. IONIZATION ENERGY
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The binding energy is associated to the orbit
radius and can therefore be calculated.

E,=—-13.6¢eV
E, = —26 melV

for H atom

For P atom in Si lattice

The modified Bohr’s model offers a simple
estimation of the ionization energy (correct order
of magnitude). This result shows that the energy
required for the dopants to provide free charges to
the material is in the order of kT.



Dopants and ionization energies for Si
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Dopants and ionization energies for GaAs
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Carrier statistics in doped semiconductors

When adding dopants, the carrier density will The ionization of atoms will follow a distribution depending
depend on: on the ionizaion energy and the temperature.

- Dopant density (Np) E, I

- Ionized (empty) dopant density (N7) fe(E) = E_Lv

- Non-ionized (populated) dopant density (N3) CXp ( kT ) + 1

where p — N7 + NS Np = Np f.(Ep)

+ p— —
Assuming that N7>>n, thenn = N} Np = Np (1 = fe(ED)) .

If we consider the ratio empty and populated donor; it is clear that a
degeneracy factor g, (usually equal to 2) must be taken into account.
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E; for doped semiconductors
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Fermi energy vs T in doped semiconductors
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Fig.7.9 aPosition of the Fermi level in Si:P(Np = 107 em—, EE’} = 45 meV, no acceptors ) as a function of temperature
withou! consideration of intrinsic carriers. Zero energy refers to the (temperature-dependent, Table 6.4) conduction-band
edge E¢ with approximative solutions for low (dashed line, (7.31)) and high (dash-doited line, (7.32)) temperatures. b
Comesponding density of conduction-band electrons as a function of temperature

High T: Intrinsic regime Np
Intermediate T: Saturation regime » Ep=Ec+kT In (T)
Low T: Freeze out regime

Nc



Fermi energy vs T in doped Si

Fig. 7.12 Fermu level in
silicon as a function of
temperature for vanous
doping levels (n-type (blue
lines) and p-type (red
fines)) of

102 1013, . ... 10'% em—3.

The intrinsic Ferm level 1s
chosen as zero energy for
all temperatures. The
(temperature-dependent )
conduction and valence
band edges are shown as
dashed lines
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Degenerate semiconductors
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Fig. 7.25 Principle of the formation of a (donor) impurity band. a Small doping concentration and sharply defined
impurity state at Ep. b increasing doping and development of an impurity band that ¢ widens further and eventually
overlaps with the conduction band for high impurity concentration. The shaded areas indicate populated statesat T = 0K



